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ABSTRACT 

MicroRNAs control numerous cancer-related signal-

ing pathways and play pivotal role in cancer initiation 

and progression. Recent studies have indicated varia-

ble and cancer-specific expression patterns of mi-

croRNA-20a (miR-20a), which have been attended 

by varying and sometimes contrary tumor biological 

functions. This is the first study regarding to the char-

acterization of miR-20a's functionality in melanoma 

cells. 

miR-20a expression was examined by reverse tran-

scriptase and quantitative polymerase chain reaction 

in an in vitro melanoma model containing HaCat 

keratinocytes and B16 melanoma cells. For cell 

growth analysis, miR-20a vectors were cloned and 

transfected into B16 cells. Cell growth kinetics were 

performed utilizing a Cell Counter and Analyzer 

Model TT (Roche Applied Science). The expression 

of both the 3p and the 5p strand processed from the 

miR-20a precursor was suppressed in melanoma cells 

B16 compared to the expression in non-malignant 

HaCat keratinocytes. Recombinant restoration of miR

-20a levels in malignant B16 cells attenuated cellular 

growth. Our data suggest that miR-20a bears biologi-

cal functions in melanoma cells and thus represents 

an anti-oncogenic factor which is suppressed during 

cancer progression. 

Key Words: microRNA-20a, cancer, melanoma 

cells, keratinocytes, skin cancer model, tumor sup-

pressor 

 

INTRODUCTION 

Each microRNA controls the expression of up to 

hundreds of genes thereby modulating pivotal 

signaling cascades including cancer-related 
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pathways. Compared to other malignancies, little is 

known about microRNA's dysregulation and 

biological efficacy in melanoma cells[1]. MicroRNA-

21, for instance, represents a well-characterized tu-

mor promotor and belongs to the few microRNAs 

which have been examined in skin cancer[2–5]. In case 

of microRNA-20a (miR-20a), little is known about its 

role in melanoma progression. In other cancer cells, 

recent studies have indicated highly variable and can-

cer-specific expression patterns of both the 3 prime 

(3p) as well as the 5 prime (5p) strand of the miR-20a 

precursor molecule (miR-20a-3p and miR-20a-5p). 

Certainly, the differentiation in the two miR-20a 

forms 3p and 5p is oftentimes being missed in molec-

ular analysis thereby hindering analysis of the biolog-

ical efficacy. In astrocytoma, miR-20a-5p expression 

is increased whereas the expression in glioblastoma 

cells is decreased[6,7]. In breast cancer, miR-20a is 

significantly downregulated compared with healthy 

tissue and the overexpression of miR-20a inhibits 

cellular proliferation[8]. Another study, however, 

demonstrated a 4-fold increase of miR-20a-5p in tri-

ple-negative breast cancer compared with luminal A 

breast invasive ductal carcinoma[9]. Furthermore, res-

toration of miR-20a leads to an attenuation of hepato-

cellular carcinoma growth but in contrast to the pro-

motion of cervical cancer growth[10,11]. Beside prolif-

eration control, miR-20a is also involved in chemo-

resistance mechanisms. The microRNA appears as an 

inhibitor of multi-drug resistance in osteosarcoma as 

well as an inducer of cisplatin resistance during gas-

tric cancer therapy[12,13]. Interestingly, in case of 

hepatocellular and gastric cancer, miR-20a correlates 

with clinical parameter and thus is discussed as a 

promising biomarker[14,15]. 

The study presented here started to characterize miR-

20a's proliferative properties applying an established 

melanoma model comprising non-malignant HaCat 

keratinocytes and B16 melanoma cells[16-19]. 

 

MATERIALS AND METHODS 

Cell Culture 

Human keratinocytes HaCat (German Cancer Re-

search Center (DKFZ), Heidelberg, Germany) and 

murine melanoma cells B16 (Cell Line Service, Ep-

pelheim, Germany) were propagated in DMEM medi-

um (PAN Biotech, Aidenbach, Germany) supple-

mented with 2 mM glutamine, 1% penicilline/

streptomycine (Biochrom, Berlin, Germany) and 8% 

fetal bovine serum (Sigma-Aldrich, Deisenhofen, 

Germany) and DMEM medium (PAN Biotech) con-

taining 4.5 g/l glucose, 2 mM glutamine, 1% penicil-

line/streptomycine (Biochrom), and 10% fetal bovine 

serum (Sigma-Aldrich), respectively. Both cell lines 

were cultivated in a humidified atmosphere at 37°C 

with 5% CO2. 

 

Proliferation Assay 

Cell growth was determined by cell counting (CASY 

Cell Counter and Analyzer Model TT, Roche Applied 

Science, Mannheim, Germany). Therefor, adherent 

cells were treated with trypsin/

ethylenediaminetetraacetic acid (EDTA) and 1:100 

diluted in CASYton (Roche Applied Science). Subse-

quently, 400 μl of the cell dilution was analyzed in 

triplicates. Measurement was performed applying a 

capillary of 150 μm in diameter and cell line-specific 

gate settings to discriminate between living cells, 

dead cells, and cellular debris: 6.6 μm/10.95 μm 

(HaCat), 7.8 μm/12.0 μm (B16). 

 

RNA preparation and cDNA synthesis 

Total RNA preparation was done using 

peqGOLDTrifast Reagent (Peqlab Biotechnology, 

Erlangen, Germany) according to the manufacturer’s 

instructions. RNA concentration was determined 

utilizing a Nanodrop 2000c UV/vis 

spectrophotometer (Peqlab Biotechnology) and RNA 

was stored at -80°C. To perform the cDNA synthesis, 

100 ng of total RNA were used with Superscript III 

Reverse Transcriptase (Life Technologies) according 

to the protocol of Chen et al.[20] and primers as 

follows: miR-20a-3p stem-loop: 5'-GTCGTATC 

CAGTGCAGGGTCCGAGGTATTCGCACTGGAT

ACGACCTTTAA-3', miR-20a-5p stem-loop: 5'-

GTCGTATCCAGTGCAGGGTCCGAGGTATTCG

CACTGGATACGACCTACCT-3', U6: 5'-GTCATC 

CTTGCGCAGG-3'. 
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Quantification of miR-20a-3p and miR-20a-5p by 

polymerase chain reaction (PCR) 

Quantification of microRNAs was performed on a 

CFX96 Real-Time System (Bio-Rad, München, 

Germany) with SensiMix SYBR hi-ROX Kit 

(Bioline, Luckenwalde, Germany). Sequences of 

primers specific for human and murine sequences 

were as follows: miR-20a-3p forward: 5’- 

GCCCGCACTGCATTATGAGCACTTAAAG-3’; 

miR-20a-5p forward: 5’-GCCCGCTAAAGTGCT 

TATAGTGCAG-3’; universal reverse primer (used 

for miR-20a-3p and miR-20a-5p): 5'-

GTGCAGGGTCCGAGGT-3'; U6 forward: 5'-

CGCTTCGGCAGCACATATAC-3'; U6 reverse: 5'-

AGGGGCCATGCTAATCTTCT-3'. After initial 

denaturation (95°C for 5 min) 45 amplification cycles 

were performed (95 ̊C for 10 s, 60 ̊C for 20 s, and 

72 ̊C for 10 s), followed by a melting-curve analysis. 

microRNA signals were standardized to U6 RNA as 

reference. 

 

Cloning of DNA plasmide pmiR-20a-3p and pmiR-

20a-5p 

cDNA sequences encoding for mature miR-20a-3p 

and miR-20a-5p mimicking small hairpin RNA 

(pmiR-20a-3p, pmiR-20a-5p) were cloned into the 

pSUPERIORpuro vector (OligoEngine, Seattle, WA, 

USA). The oligonucleotides miR-20a-3p 

oligonucleotide 1: 5’-gatccccACTGCATTATGAG 

CACTTAAAGttcaagagaCTTTAAGTGCTCATAAT

GCAGTttttta-3’ and miR-20a-3p oligonucleotide 2: 

5’-tcgataaaaaACTGCATTATGAGCACTTAAAGtc 

tcttgaaCTTTAAGTGCTCATAATGCAGTggg-3’ 

and the oligonucleotides miR-20a-5p oligonucleotide 

1: 5’-gatccccTAAAGTGCTTATAGTGCAGGTA 

GttcaagagaCTACCTGCACTATAAGCACTTTAttttt

a-3’ and miR-20a-5p oligonucleotide 2: 5’-

tcgataaaaaTAAAGTGCTTATAGTGCAGGTAGtctct

tgaaCTACCTGCACTATAAGCACTTTAggg-3’, 

respectively, were hybridized by a temperature 

gradient (95°C to 4°C in 40 min). Due to the 

asymmetrical design of both complementary 

oligonucleotides, the hybridization products formed 

defined single stranded 5' overhangs for ligation into 

the BglII/XhoI (Thermo Scientific, Waltham, MA, 

USA) digested pSUPERIORpuro vector. After 

following ligation (T4 DNA Ligase; Thermo 

Scientific), positively selected clones were verified by 

restriction analysis and sequencing. 

 

Transfection experiments 

HaCat and B16 cells were transiently transfected with 

the microRNA mimicking vectors miR-20a-3p and 

miR-20a-35, respectively. Transfection experiments 

were performed using Lipofectamine2000 reagent 

(Life Technologies) according to the manufacturer's 

protocol. 

 

Statistics 

For data evaluation, the graphics and statistics soft-

ware Graph Pad Prism V 5.01 (GraphPad Software, 

La Jolla, CA, USA) was used. Results of at least four 

experiments were statistically analyzed, using the 

unpaired Student‘s t-test, and expressed as the mean 

±SD compared to control cells. Results of p≤0.05 (*), 

p≤0.01 (**), and p≤0.001 (***) were given as signifi-

cance. 

 

RESULTS 

Suppressed expression of miR-20a-3p and miR-

20a-5p correlates with with enhanced growth rate 

of skin tumor cells 

Cellular proliferation analysis over a period of 144 h 

(Figure 1) showed reduced cell growth characteristics 

of non-malignant HaCat cells (24 h: 3.9x104±1.2x104; 

48 h: 4.5x104±3.5x104; 72 h: 1.1x105±2.4x104; 96 h: 

2.9x105±9.2x104; 120 h: 4.7x105±1.9x105; 144 h: 

7.9x105±9.3x104) compared to malignant B16 cells 

(24 h: 2.4x104±4.3x103, p=0.0593; 48 h: 

1.0x105±3.8x104, p=0.0815; 72 h: 4.0x105±9.0x104, 

p=0.0009; 96 h: 8.8x105±1.8x105, p=0.0012; 120 h: 

1.6x106±2.3x105, p=0.0002; 144 h: 1.8x106±7.7x104, 

p<0.0001). 

 

Subsequent detection and quantification of miR-20a-

3p and miR-20a-5p demonstrated the reduced expres-

sion of both miRs in B16 cancer cells (miR-20a-3p: 

1.7-fold±0.3-fold reduction, p=0.0381; miR-20a-5p: 
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1.7-fold±0.2-fold reduction, p=0.0015) compared to 

non-malignant HaCat cells (Figures. 2A and 2B). In 

solid tumors, microRNA's downregulation frequently 

point to tumor suppressive and anti-oncogenic prop-

erties of these miR species[21]. 

Figure 1. Cell growth of the melanoma cell line 

B16 compared to the non-malignant keratinocyte 

cell line HaCat. Cells were counted using a CASY 

Cell Counter and Analyzer Model TT (Roche Ap-

plied Science) at indicated time points. Data are giv-

en as the mean ± SD with p≤0.01 (**), and p≤0.001 

(***) as determined by Student's t-test. 

Figure 2. Expression of miR-20a-3p and miR-20a-

5p in B16 and HaCat cells. MicroRNA levels of 

miR-20a-3p (A) and miR-20a-5p (B) were analyzed 

by quantitative reverse transcription and polymerase 

chain reaction (qRT-PCR) and standardized to U6 

RNA expression levels. Data were given as the mean 

± SD and expressed as fold change (HaCat = 1.0). 

 

Overexpression of miR-20a-3p and miR-20a-5p 

inhibits cellular growth of skin tumor cells 

miR-20a-3p and miR-20a-5p were cloned into the 

eukaryotic RNA expression vector pSUPERIORpuro 

(Figures 3A and 3B) and applied in transfection ex-

periments. Transfection of the empty control vector 

led to slightly reduced cell growth of B16 cells (24 h: 

8.4x103±7.9x103; 48 h: 1.6x104±8.2x103; 72 h: 

6.6x104±3.5x104; 96 h: 3.1x105±8.2x104; 120 h: 

6.0x105±2.5x105; 144 h: 9.0x105±1.8x105; Fig. 4) 

compared to untransfected cells (Figure 1). Transient 

overexpression of recombinant miR-20a-3p and miR-

20a-5p revealed a minor but measurable attenuation 

of B16 cell growth in tendency (pmiR-20a-3p: 24 h: 

7.1x103±6.8x103, p=0.7773; 48 h: 2.4x104±1.6x104, 

p=0.2554; 72 h: 6.8x104±5.4x104, p=0.9315; 96 h: 

2.0x105±1.7x105, p=0.2942; 120 h: 3.5x105±3.1x105, 

p=0.2328; 144 h: 5.9x105±3.6x105, p=0.1529; pmiR-

20a-5p: 24 h: 7.5x103±5.1x103, p=0.8260; 48 h: 

1.7x104±9.2x103, p=0.8283; 72 h: 6.5x104±4.1x104, 

p=0.9648; 96 h: 2.4x105±1.7x105, p=0.4824; 120 h: 

4.5x105±2.4x105, p=0.8239; 144 h: 6.7x105±1.4x105, 

p=0.9837; Figure 4). 

Figure 3. Cloning of miR20a-3p and miR-20a-5p 

encoding plasmid vector. (A) Oligonucleotides en-

coding for the miR20a-3p and miR-20a-5p small 

hairpin RNAs were hybridized forming single-

stranded overhangs similar to BglII and XhoI endo-

nuclease digestion. (B) The hybridization product of 

160 base pairs (bp) was ligated into the BglII/XhoI 

digested vector pSUPERIORpuro (OligoEngine) and 

verified by sequencing. 

Figure 4. Overexpression of miR20a-3p and miR-

20a-5p inhibits cellular growth of B16 tumor cells. 
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Cell growth of B16 cells overexpressing miR20a-3p 

and miR-20a-5p compared to mock transfected B16 

cells (control). Cells were counted using a CASY Cell 

Counter and Analyzer Model TT (Roche Applied Sci-

ence) at indicated time points. Data are given as the 

mean ± SD. 

 

DISCUSSION 

Cells have to satisfy several requirements to become 

malignant, elegantly grouped by Hanahan and Wein-

berg as: enhanced cell motility, escalated angiogene-

sis, suppressed apoptosis, limitless replication, inde-

pendence in growth signals, and resistance to anti-

growth signals[22]. Dysregulation in the cellular safe-

guard machinery has a broad impact on cancer initia-

tion and subsequent progression. In tumor biology, 

many miRs have been identified as crucial modula-

tors of cancer malignancy usually classified in anti-

oncogenic microRNAs (tumor suppressors) and pro-

oncogenic microRNAs (oncomirs)[23]. Although miR-

20a-3p's and miR-20a-5p's regulatory properties have 

been characterized in various tumor entities, surpris-

ingly, nothing is known about their role in skin cancer 

development. 

 

In the study presented here, expression and function-

ality of both the 3p and the 5p strand processed from 

the miR-20a precursor have been evaluated in an es-

tablished skin cancer model for the first time. Both 

miR-20a forms were determined to fulfill a biological 

function. The expression of miR-20a-3p/miR-20a-5p 

was suppressed in melanoma cells B16 compared to 

the expression in non-malignant HaCat keratinocytes. 

Moreover, restoration of miR-20a-3p/miR-20a-5p 

levels in malignant B16 cells clearly demonstrated 

anti-proliferative properties of both and thus specify-

ing miR-20a-3p/miR-20a-5p as tumor suppressors. 

Due to plasmid DNA transfer by electroporation is 

highly variable[24], however, transfection experiments 

overexpressing miR20a-3p/miR-20a-5p failed to be-

come statistically significant. 

 

Our findings are very similar to a study of Ottman et 

al., in which they showed downregulation and anti-

proliferative properties of miR-20a in prostate cancer 

cells[25]. On the other hand, several studies demon-

strated an upregulated expression of oncogenic miR-

20a in other malignancies, highlighting miR-20a's 

heterogeneity in expression and functionality in a tis-

sue and cell type-specific manner[26]. These conflict-

ing data may be explained by the common mode of 

microRNA synthesis. Numerous microRNA genes are 

organized in gene clusters in which multiple mi-

croRNAs are expressed from a single promoter[27]. 

The resulting primary polycistronic transcript is sub-

sequently processed into several individual mi-

croRNAs. The microRNA cluster miR-17 ~ 92 repre-

sents a microRNA cluster encoding for the mi-

croRNAs miR-17, miR-18a, miR-19a, miR-19b-1, 

miR-20a, and miR-92a[28]. Abasi et al. examined the 

precursor and mature levels of miR-17, miR-20a, and 

miR-92a from the miR-17 ~ 92 cluster in various can-

cer cell lines and found cancer cell-specific variations 

of the three microRNAs compared to the level of un-

processed polycistronic precursor RNA[29]. 

 

CONCLUSION 

In conclusion, our data suggest that melanoma cells 

may belong to the group of cancer cells in which miR

-20a-3p/miR-20a-5p inhibit cell growth. Furthermore, 

during characterization of miR-20a-3p's/miR-20a-5p's 

functionality in cancer cells the role of other mi-

croRNAs encoded by the miR-17 ~ 92 microRNA 

cluster should not be ignored. 
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